import { empty as emptyR } from 'ramda';
import fl from './mapping';
import {
applyTrait,
functorTrait,
setoidTrait,
semigroupTrait,
chainTrait,
ordTrait,
} from './traits';
// we do this here for jsdocs generate properly
const { of, ap, map, equals, concat, chain, lte, empty, contramap } = fl;
/**
* The simplest {@link https://github.com/fantasyland/fantasy-land|fantasy-land}
* compatible monad which attaches no information to values.
*
* The Identity type is a very simple type that has no interesting side effects and
* is effectively just a container of some value. So why does it exist ?
* The Identity type is often used as the base monad of a monad
* transformer when no other behaviour is required.
*
* @memberOf RA
* @implements
* {@link https://github.com/fantasyland/fantasy-land#apply|Apply},
* {@link https://github.com/fantasyland/fantasy-land#applicative|Applicative},
* {@link https://github.com/fantasyland/fantasy-land#functor|Functor},
* {@link https://github.com/fantasyland/fantasy-land#setoid|Setoid},
* {@link https://github.com/fantasyland/fantasy-land#semigroup|Semigroup},
* {@link https://github.com/fantasyland/fantasy-land#chain|Chain},
* {@link https://github.com/fantasyland/fantasy-land#monad|Monad},
* {@link https://github.com/fantasyland/fantasy-land#ord|Ord},
* {@link https://github.com/fantasyland/fantasy-land#monoid|Monoid*},
* {@link https://github.com/fantasyland/fantasy-land#contravariant|Contravariant}
* @since {@link https://char0n.github.io/ramda-adjunct/1.8.0|v1.8.0}
*/
class Identity {
/**
* Fantasy land {@link https://github.com/fantasyland/fantasy-land#applicative|Applicative} specification.
*
* @static
* @sig of :: Applicative f => a -> f a
* @param {*} value
* @returns {RA.Identity}
* @example
*
* const a = Identity.of(1); //=> Identity(1)
*/
static [of](value) {
return new Identity(value);
}
static of(value) {
return new Identity(value);
}
/**
* @static
*/
static get ['@@type']() {
return 'RA/Identity';
}
/**
* Private constructor. Use {@link RA.Identity.of|Identity.of} instead.
*
* @param {*} value
* @return {RA.Identity}
*/
constructor(value) {
this.value = value;
}
/**
* Catamorphism for a value.
* @returns {*}
* @example
*
* const a = Identity.of(1);
* a.get(); //=> 1
*/
get() {
return this.value;
}
/**
* Fantasy land {@link https://github.com/fantasyland/fantasy-land#apply|Apply} specification.
*
* @sig ap :: Apply f => f a ~> f (a -> b) -> f b
* @param {RA.Identity} applyWithFn
* @return {RA.Identity}
* @example
*
* const a = Identity.of(1);
* const b = Identity.of(1).map(a => b => a + b);
*
* a.ap(b); //=> Identity(2)
*/
[ap](applyWithFn) {
return applyTrait[ap].call(this, applyWithFn);
}
ap(applyWithFn) {
return this[ap](applyWithFn);
}
/**
* Fantasy land {@link https://github.com/fantasyland/fantasy-land#functor|Functor} specification.
*
* @sig map :: Functor f => f a ~> (a -> b) -> f b
* @param {Function} fn
* @return {RA.Identity}
* @example
*
* const a = Identity.of(1);
* a.map(a => a + 1); //=> Identity(2)
*/
[map](fn) {
return functorTrait[map].call(this, fn);
}
map(fn) {
return this[map](fn);
}
/**
* Fantasy land {@link https://github.com/fantasyland/fantasy-land#setoid|Setoid} specification.
*
* @sig equals :: Setoid a => a ~> a -> Boolean
* @param {RA.Identity} setoid
* @return {boolean}
* @example
*
* const a = Identity.of(1);
* const b = Identity.of(1);
* const c = Identity.of(2);
*
* a.equals(b); //=> true
* a.equals(c); //=> false
*/
[equals](setoid) {
return setoidTrait[equals].call(this, setoid);
}
equals(setoid) {
return this[equals](setoid);
}
/**
* Fantasy land {@link https://github.com/fantasyland/fantasy-land#semigroup|Semigroup} specification.
*
* @sig concat :: Semigroup a => a ~> a -> a
* @param {RA.Identity} semigroup
* @return {RA.Identity}
* @example
*
* const a = Identity.of(1);
* const b = Identity.of(1);
* a.concat(b); //=> 2
*
* const c = Identity.of('c');
* const d = Identity.of('d');
* c.concat(d); //=> 'cd'
*
* const e = Identity.of(['e']);
* const f = Identity.of(['f']);
* e.concat(f); //=> ['e', 'f']
*/
[concat](semigroup) {
return semigroupTrait[concat].call(this, semigroup);
}
concat(semigroup) {
return this[concat](semigroup);
}
/**
* Fantasy land {@link https://github.com/fantasyland/fantasy-land#chain|Chain} specification.
*
* @sig chain :: Chain m => m a ~> (a -> m b) -> m b
* @param {Function} fn Function returning the value of the same {@link https://github.com/fantasyland/fantasy-land#semigroup|Chain}
* @return {RA.Identity}
* @example
*
* const a = Identity.of(1);
* const fn = val => Identity.of(val + 1);
*
* a.chain(fn).chain(fn); //=> Identity(3)
*/
[chain](fn) {
return chainTrait[chain].call(this, fn);
}
chain(fn) {
return this[chain](fn);
}
/**
* Fantasy land {@link https://github.com/fantasyland/fantasy-land#ord|Ord} specification.
*
* @sig lte :: Ord a => a ~> a -> Boolean
* @param {RA.Identity} ord
* @return {boolean}
* @example
*
* const a = Identity.of(1);
* const b = Identity.of(1);
* const c = Identity.of(2);
*
* a.lte(b); //=> true
* a.lte(c); //=> true
* c.lte(a); //=> false
*/
[lte](ord) {
return ordTrait[lte].call(this, ord);
}
lte(ord) {
return this[lte](ord);
}
/**
* Fantasy land {@link https://github.com/fantasyland/fantasy-land#monoid|Monoid*} specification.
* Partial implementation of Monoid specification. `empty` method on instance only, returning
* identity value of the wrapped type. Using `R.empty` under the hood.
*
*
* @sig empty :: Monoid m => () -> m
* @return {RA.Identity}
* @example
*
* const a = Identity.of('test');
* const i = a.empty();
*
* a.concat(i); //=> Identity('string');
* i.concat(a); //=> Identity('string');
*/
[empty]() {
return this.constructor.of(emptyR(this.value));
}
empty() {
return this[empty]();
}
/**
* Fantasy land {@link https://github.com/fantasyland/fantasy-land#contravariant|Contravariant} specification.
*
* @sig contramap :: Contravariant f => f a ~> (b -> a) -> f b
* @param {Function} fn
* @return {RA.Identity}
* @example
*
* const identity = a => a;
* const add1 = a => a + 1;
* const divide2 = a => a / 2;
*
* Identity.of(divide2).contramap(add1).get()(3); //=> 2
* Identity.of(identity).contramap(divide2).contramap(add1).get()(3); //=> 2
* Identity.of(identity).contramap(a => divide2(add1(a))).get()(3); //=> 2
*/
[contramap](fn) {
return this.constructor.of((value) => this.value(fn(value)));
}
contramap(fn) {
return this[contramap](fn);
}
}
export default Identity;